Особенности вязкотекучего состояния полимеров

Рефераты по химии / Химия и физика полимеров / Особенности вязкотекучего состояния полимеров
Страница 1

Текучее (жидкое) состояние веществ характеризуется их способностью к развитию необратимых деформаций, обусловленных взаимными поступательными перемещениями частиц (чаще - молекул). Механические свойства текучих систем изучает область механики, называемая реологией. Реология полимеров устанавливает взаимосвязи между напряжениями, деформациями и скоростью развития деформаций при различных температурах, режимах деформирования и для текучих полимеров различного химического строения и различных молекулярных масс. Знание таких зависимостей необходимо для создания и совершенствования процессов переработки полимеров путем формования их расплавов или растворов.

Длинноцепочечное строение полимерных молекул предопределяет ряд особенностей свойств полимеров, находящихся в жидком (текучем) состоянии.

Первой особенностью жидких полимеров является их очень высокая вязкость, которая при течении может составлять от нескольких тысяч до 1010 Па*с. Вследствие высокой вязкости текучих полимеров их называют вязкотекучими. Большие значения вязкости полимеров, возрастающие с повышением их молекулярной массы, являются одним из доказательств длинноцепочечного строения макромолекул.

Вторая особенность вязкотекучих полимеров - одно­временное проявление наряду с необратимой также и высокоэластической деформации. Особенно заметно это явление в процессе течения полимеров при невысоких температурах и небольших нагрузках. Текучие полимеры, в которых наряду с необратимой развивается и высокоэластическая деформация, называют вязкоупругими. Проявление высокоэластичности означает, что при течении происходит принудительное изменение конформаций макромолекул и числа контактов между ними, т.е. изменение структуры полимерной системы.

Третья особенность полимеров, находящихся в вязкотекучем релаксационном состоянии, заключается в сложном механизме их течения, которое в зависимости от условий может осуществляться путем перемещений отдельных участков цепей (сегментов), макромолекул в целом и даже их агрегатов.

Четвертая особенность процесса течения полимеров - наличие механохимических явлений. Высокая вязкость расплавов полимеров требует для осуществления их течения повышенных температур и механических нагрузок. Поэтому при выбранной температуре течения можно достигнуть такого момента, когда приложенной механической энергии станет достаточно для разрыва химических связей в макромолекулах. Этот механохимический крекинг вызовет уменьшение молекулярной массы и ускорение течения (хотя бы временное, пока образовавшиеся фрагменты не прореагируют путем рекомбинации или прививки к другим цепям). При механохимических процессах возможно образование разветвленных или частично сшитых структур, что может способствовать и замедлению течения.

Деформации при течении полимеров. При воздействия на расплав полимера механических нагрузок, вызывающих течение, наблюдается три простейших типа деформации: простой сдвиг, одноосное растяжение и всестороннее сжатие. Деформация сдвига g - величина безразмерная. Скорость деформации сдвига dg/dt=g* определяет изменение деформации во времени и имеет размерность с-1.

Под влиянием приложенного напряжения в текущем полимере одновременно развиваются необратимые и обратимые высокоэластические деформации, а общая деформация является их суммой. По мере течения высокоэластическая деформация достигает постоянного значения, а необратимая равномерно увеличивается во времени - состояние системы, при котором ее течение начинается с постоянной скоростью, называют установившимся течением. Установившемуся течению соответствует динамическое равновесие процессов изменения структуры под влиянием деформирования и ее восстановления под действием теплового движения.

Структуру текучей полимерной системы (расплава или концентрированного раствора) обычно представляют в виде флуктуационной сетки - узлами ее являются контакты между макромолекулами или их ассоциатами. При отсутствии нагрузки и постоянной температуре плотность узлов флуктуационной сетки постоянна; нагрузка, вызывающая течение (взаимное перемещение макромолекул), разрушает часть узлов, сдерживающих деформирование. Это приводит к быстрому понижению сопротивления течению, к структурной релаксации, заканчивающейся установившимся течением.

Страницы: 1 2 3

Информация о химии

Ган (Hahn), Отто

Немецкий химик Отто Ган родился во Франкфурте-на-Майне и был одним из трех сыновей Генриха Гана, стекольщика, и Шарлотты Гизе (в девичестве Штуцман) Ган. После получения начального образования в Клингерском реальном училище Ган по ...

Милликен (Milliken), Роберт Эндрюс

Американский физик Роберт Эндрюс Милликен родился в Моррисоне (штат Иллинойс). Милликен был вторым сыном священника конгрегационалистской церкви Сайласа Франклина Милликена и Мэри Джейн (Эндрюс) Милликен, бывшего декана женского о ...

Yb — Иттербий

ИТТЕРБИЙ (лат. Ytterbium), Yb, химический элемент III группы периодической системы, атомный номер 70, атомная масса 173,04; относится к лантаноидам. Свойства: металл. Плотность 7,02 г/см3, tпл 824 °С. Название: о названии см ...