Чедвик (Chadwick), Джеймс

Известные химики / Чедвик (Chadwick), Джеймс

Английский физик Джеймс Чедвик родился в г. Боллингтоне, вблизи Манчестера. Он был старшим из четырех детей Джона Джозефа Чедвика, владельца прачечной, и Энн Мэри (Ноулс) Чедвик. Окончив местную начальную школу, он поступил в манчестерскую муниципальную среднюю школу, где выделялся успехами в математике. В 1908 г. Чедвик поступил в Манчестерский университет, собираясь изучать математику, однако по недоразумению с ним провели собеседование по физике. Слишком скромный, чтобы указать на ошибку, он внимательно выслушал вопросы, которые ему задавали, и решил сменить специализацию. Через три года он окончил университет с отличием по физике.

В 1911 г. Чедвик начал аспирантскую работу под руководством Эрнеста Резерфорда в физической лаборатории в Манчестере. Именно в это время эксперименты по рассеянию альфа-частиц (которые рассматривались как заряженные атомы гелия), пропущенных через тонкую металлическую фольгу, привели Резерфорда к предположению, что вся масса атома сконцентрирована в плотном положительно заряженном ядре, окруженном отрицательно заряженными электронами, которые, как известно, обладают относительно малой массой. Чедвик получил степень магистра в Манчестере в 1913 г., и в этом же году, став обладателем стипендии, он уехал в Германию, чтобы изучать радиоактивность под руководством Ганса Гейгера (бывшего ассистента Резерфорда) в Государственном физико-техническом институте в Берлине. Когда в 1914 г. началась первая мировая война, Чедвик был интернирован как английский гражданин и более 4 лет провел в лагере для гражданских лиц в Рулебене. Хотя Чедвик страдал от суровых условий, подтачивавших его здоровье, он принял участие в научном обществе, созданном его товарищами по несчастью. Деятельность этой группы получила поддержку со стороны некоторых немецких ученых, включая Вальтера Нернста, с которым Чедвик познакомился, будучи интернирован.

Чедвик вернулся в Манчестер в 1919 г. Незадолго перед этим Резерфорд обнаружил, что бомбардировка альфа-частицами (которые теперь рассматривались как ядра гелия) может вызвать распад атома азота на более легкие ядра других элементов. Несколько месяцев спустя Резерфорда выбрали на должность директора Кавендишской лаборатории Кембриджского университета, и он пригласил Чедвика последовать за ним. Чедвик получил стипендию Уоллестона в Гонвилл-энд-Кайус-колледже, Кембридж, и смог работать с Резерфордом, продолжая эксперименты с альфа-частицами. Они выяснили, что при бомбардировке ядер часто образуется то, что, по-видимому, является ядрами водорода, легчайшего из элементов. Ядро водорода несло положительный заряд, равный по величине отрицательному заряду соответствующего электрона, но обладало массой, примерно в 2 тыс. раз превышающей массу электрона. Резерфорд позднее назвал его протоном. Становилось ясно, что атом как целое был электрически нейтральным, поскольку число протонов в его ядре равнялось числу окружающих ядро электронов. Однако такое число протонов не согласовалось с массой атомов, за исключением простейшего случая водорода. Чтобы устранить такое расхождение, Резерфорд предложил в 1920 г. идею, что ядра могут содержать электрически нейтральные частицы, которые позднее он назвал нейтронами, образованные соединением электрона и протона. Противоположная точка зрения состояла в том, что атомы содержат электроны как вне, так и внутри ядра и что отрицательный заряд ядерных электронов просто нейтрализует часть заряда протонов. Тогда протоны ядра давали бы полный вклад в общую массу атома, а их суммарный заряд был бы как раз такой, чтобы нейтрализовать заряд окружающих ядро электронов. Хотя к предположению Резерфорда о том, что существует нейтральная частица, отнеслись с уважением, но все же не было экспериментального подтверждения этой идеи.

Чедвик получил докторскую степень по физике в Кембридже в 1921 г. и был избран членом ученого совета Гонвилл-энд-Кайус-колледжа. Два года спустя он стал заместителем директора Кавендишской лаборатории. Вплоть до конца 20-х гг. он исследовал такие атомные явления, как искусственный распад ядер легких элементов под действием бомбардировки альфа-частицами и спонтанное испускание бета-частиц (электронов). В процессе этой работы он размышлял над тем, как можно было бы подтвердить существование резерфордовской нейтральной частицы, однако решающие исследования, позволившие это сделать, были проведены в Германии и Франции.

В 1930 г. немецкие физики Вальтер Боте и Ханс Беккер обнаружили, что при бомбардировке некоторых легких элементов альфа-частицами возникает излучение, обладающее особой проникающей силой, которое они приняли за гамма-лучи. Гамма-лучи впервые стали известны как излучение, порождаемое радиоактивными ядрами. Они обладали большей, чем у рентгеновских лучей, проникающей способностью, поскольку у них более короткая длина волны. Однако некоторые результаты озадачивали, особенно когда в качестве мишени для бомбардировки использовался бериллий. При этом излучение в направлении движения падающего потока альфа-частиц обладало большей проникающей способностью, чем обратное излучение. Чедвик предположил, что бериллий испускает поток нейтральных частиц, а не гамма-лучи. В 1932 г. французские физики Фредерик Жолио и Ирен Жолио-Кюри, исследуя проникающую способность излучения бериллия, помещали различные поглощающие материалы между бомбардируемым бериллием и ионизационной камерой, выполнявшей роль регистратора излучения. Когда в качестве поглотителя они взяли парафин (вещество, богатое водородом), то обнаружили увеличение, а не уменьшение излучения, выходящего из парафина. Проверка привела их к выводу, что усиление излучения связано с протонами (ядрами водорода), выбиваемыми из парафина проникающей радиацией. Они предположили, что протоны выбиваются в результате столкновений с квантами (дискретными единицами энергии) необычайно мощного гамма-излучения, подобно тому как электроны выбиваются при столкновении с рентгеновскими лучами (эффект Комптона) в эксперименте, впервые проведенном Артуром Х. Комптоном.

Чедвик быстро повторил и расширил эксперимент, проведенный французской парой, и обнаружил, что толстая свинцовая пластина не оказывает сколько-нибудь заметного влияния на излучение бериллия, не ослабляя его и не порождая вторичного излучения, что свидетельствовало о его высокой проникающей способности. Однако парафин вновь дал добавочный поток быстрых протонов. Чедвик произвел проверку, которая подтвердила, что это действительно протоны, и определил их энергию. Затем он показал, что по всем признакам крайне мало вероятно, чтобы при столкновениях альфа-частиц с бериллием могли возникать гамма-лучи с энергией, достаточной для того, чтобы выбивать протоны из парафина с такой скоростью. Поэтому он оставил идею о гамма-лучах и сосредоточился на нейтронной гипотезе. Приняв существование нейтрона, он показал, что в результате захвата альфа-частицы ядром бериллия может образоваться ядро элемента углерода, причем освобождается один нейтрон. То же самое он проделал и с бором – еще одним элементом, порождавшим проникающую радиацию при бомбардировке альфа-лучами. Альфа-частица и ядро бора соединяются, образуя ядро азота и нейтрон. Высокая проникающая способность потока нейтронов возникает потому, что нейтрон не обладает зарядом и, следовательно, при движении в веществе не испытывает влияния электрических полей атомов, а взаимодействует с ядрами лишь при прямых столкновениях. Нейтрону требуется также меньшая энергия, чем гамма-лучу, чтобы выбить протон, поскольку он обладает большим импульсом, чем квант электромагнитного излучения той же энергии. То, что излучение бериллия в прямом направлении оказывается более проникающим, можно связать с предпочтительным излучением нейтронов в направлении импульса падающего потока альфа-частиц.

Чедвик также подтвердил гипотезу Резерфорда, что масса нейтрона должна быть равна массе протона, анализируя обмен энергией между нейтронами и протонами, выбитыми из вещества, как если бы речь шла о соударении бильярдных шаров. Энергообмен особенно эффективен, поскольку их массы почти одинаковы. Он также проанализировал треки атомов азота, подвергшихся соударению с нейтронами, в конденсационной камере – приборе, изобретенном Ч.Т.Р. Вильсоном. Пар в конденсационной камере конденсируется вдоль наэлектризованной дорожки, которую оставляет ионизирующая частица при взаимодействии с молекулами пара. Дорожка видна, хотя сама частица и невидима. Поскольку нейтрон не оказывает непосредственно ионизирующего воздействия, его след не виден. Чедвику пришлось устанавливать свойства нейтрона по треку, оставляемому после соударения с атомом азота. Оказалось, что масса нейтрона на 1,1% превышает массу протона.

Эксперименты и расчеты, проделанные другими физиками, подтвердили выводы Чедвика, и существование нейтрона было быстро признано. Вскоре после этого Вернер Гейзенберг показал, что нейтрон не может быть смесью протона и электрона, а представляет собой незаряженную ядерную частицу – третью субатомную, или элементарную, частицу из тех, что были открыты. Предложенное Чедвиком доказательство существования нейтрона в 1932 г. в корне изменило картину атома и проложило путь для дальнейших открытий в физике. У нейтрона было и практическое применение как у разрушителя атома: в отличие от положительно заряженного протона он не отталкивается при подходе к ядру.

«За открытие нейтрона» Чедвик был награжден в 1935 г. Нобелевской премией по физике. «Существование нейтрона полностью установлено, – сказал Ханс Плейель из Шведской королевской академии наук в своей речи на церемонии вручения, – в результате чего ученые пришли к новой концепции строения атома, которая лучше согласуется с распределением энергии внутри атомных ядер. Стало очевидным, что нейтрон образует один из строительных кирпичей, из которых состоят атомы и молекулы, а значит, и вся материальная Вселенная».

Чедвик перешел в 1935 г. в Ливерпульский университет, чтобы создать новый центр физических ядерных исследований. В Ливерпуле он следил за модернизацией университетского оборудования и руководил строительством циклотрона – установки для ускорения заряженных частиц. Когда в 1939 г. началась вторая мировая война, британское правительство обратилось к Чедвику с запросом, возможна ли цепная ядерная реакция, и он начал с помощью ливерпульского циклотрона исследовать эту возможность. В следующем году он вошел в состав Модовского комитета, небольшой избранной группы видных британских ученых, которая сделала оптимистические выводы о возможности Британии создать атомную бомбу, и стал координатором экспериментальных программ по разработке атомного оружия в Ливерпуле, Кембридже и Бристоле. В дальнейшем, однако, Британия решила присоединиться к американской программе создания ядерного оружия и направила своих ученых, занимавшихся ядерными исследованиями, в Соединенные Штаты. С 1943 по 1945 г. Чедвик координировал усилия британских ученых, работавших над Манхэттенским проектом (секретная программа создания атомной бомбы).

Чедвик вернулся в Ливерпульский университет в 1946 г. Два года спустя он отошел от активной научной деятельности и возглавил Гонвилл-энд-Кайус-колледж. В 1958 г. он переехал в Северный Уэльс с женой Эйлин, до замужества Стюарт-Браун, на которой женился в 1925 г. Они вернулись в Кембридж в 1969 г., чтобы быть поближе к своим дочерям-близнецам. Чедвик умер 5 лет спустя в Кембридже.

Кроме Нобелевской премии, Чедвик получил медаль Хьюгса (1932 г.) и медаль Копли (1950 г.) Королевского общества, медаль «За заслуги» правительства США (1946 г.), медаль Франклина Франклиновского института (1951 г.) и медаль Гутри Физического института в Лондоне (1967 г.). Получив дворянское звание в 1945 г., он являлся обладателем почетных степеней 9 британских университетов и был членом многих научных обществ и академий в Европе и Соединенных Штатах.

      Информация о химии

      Rb — Рубидий

      РУБИДИЙ (лат. Rubidium), Rb, химический элемент I группы периодической системы Менделеева, атомный номер 37, атомная масса 85,4678. Относится к щелочным металлам. Свойства: серебристо-белый металл пастообразной консистенции. Плот ...

      Ферми (Fermi), Энрике

      Итало-американский физик Энрико Ферми родился в Риме. Он был младшим из трех детей железнодорожного служащего Альберте Ферми и урожденной Иды де Гаттис, учительницы. Еще в детстве Ферми обнаружил большие способности к математике и ...

      Ломоносов, Михаил Васильевич

      Русский учёный Михаил Васильевич Ломоносов родился в селе Денисовка Архангельской губернии (ныне с. Ломоносово) в семье помора. В 1731 г. он поступает учиться в Славяно-греко-латинскую академию в Москве, выдав себя за дворянского ...