Энергетические эффекты в химических реакциях. Внутренняя энергия. Энтальпия. Стандартная энтальпия образования химических соединений
Рефераты по химии / Общая и неорганическая химия / Энергетические эффекты в химических реакциях. Внутренняя энергия.
Энтальпия. Стандартная энтальпия образования химических соединенийСтраница 3
Так для реакции, протекающей по уравнению: aA + bB = pP + qQ тепловой эффект можно рассчитать по уравнению:DH = [aDсH(A) + bDсH(B)] - [pDсH(P) + qDсH(Q)] Энтальпия (теплота) сгорания - это тепловой эффект сгорания 1 моль горючего вещества до продуктов предельного окисления (до образования высших оксидов): DcH [Дж/моль, кДж/моль].Стандартная энтальпия сгорания DcH°(298 K) - это тепловой эффект реакции сгорания в кислороде 1 моль данного вещества при стандартных условиях. Например, тепловой эффект реакции сгорания 1 моль метана в стандартных условиях равен стандартной теплоте сгорания метана:CH4(г) + 2O2(г) = CO2(г) + 2H2O(г) ; DH°(298 K) = -890,2 кДж, т.е. DH°(298 K) = DcH(298 K, CH4(г)) = -890,2 кДж/моль.Энтальпии сгорания кислорода и высших оксидов равны нулю. Следует четко разграничивать два различных понятия - энтальпия образования и энтальпия сгорания вещества, хотя численные значения этих величин в некоторых случаях совпадают (табл. 4.1). Например, стандартные энтальпии сгорания водорода и углерода равны стандартным энтальпиям образования CO2 и H2O.
Закон Гесса распространяется не только на химические реакции, но и на различные физико-химические процессы, сопровождающиеся энергетическими эффектами: растворение, сольватацию (гидратацию), фазовые превращения (плавление, испарение, возгонка, затвердевание (кристаллизация), конденсация, сублимация)Закон Гесса и его следствия справедливы и используются также для расчета энергии химической связи, энергии кристаллической решетки, энергии межмолекулярного взаимодействия, энтальпии растворения и сольватации (гидратации) и т.д. Закон Гесса справедлив для тех взаимодействий, которые протекают при постоянном объеме или при постоянном давлении, а единственным видом совершаемой работы является работа против сил внешнего давления. Тепловые эффекты реакций, в результате которых совершается другая работа, например, электрическая работа, не могут быть вычислены по закону Гесса, так как их теплоты являются функциями пути.
В каждом веществе запасено определенное количество энергии. С этим свойством веществ мы сталкиваемся уже за завтраком, обедом или ужином, так как продукты питания позволяют нашему организму использовать энергию самых разнообразных химических соединений, содержащихся в пище. В организме эта энергия преобразуется в движение, работу, идет на поддержание постоянной (и довольно высокой!) температуры тела.
Энергия химических соединений сосредоточена главным образом в химических связях. Чтобы разрушить связь между двумя атомами, требуется ЗАТРАТИТЬ ЭНЕРГИЮ. Когда химическая связь образуется, энергия ВЫДЕЛЯЕТСЯ.
Вспомним, что атомы не соединялись бы между собой, если бы это не вело к "выигрышу" (то есть высвобождению) энергии. Этот выигрыш может быть большим или малым, но он обязательно есть при образовании молекул из атомов.
Любая химическая реакция заключается в разрыве одних химических связей и образовании других.
Когда в результате химической реакции при образовании новых связей выделяется энергии БОЛЬШЕ, чем потребовалось для разрушения "старых" связей в исходных веществах, то избыток энергии высвобождается в виде тепла. Примером могут служить реакции горения. Например, природный газ (метан CH4) сгорает в кислороде воздуха с выделением большого количества теплоты (рис. 1-1а). Такие реакции называются ЭКЗОТЕРМИЧЕСКИМИ от латинского "экзо" - наружу (имея в виду выделяющуюся энергию).
В других случаях на разрушение связей в исходных веществах требуется энергии больше, чем может выделиться при образовании новых связей. Такие реакции происходят только при подводе энергии извне и называются ЭНДОТЕРМИЧЕСКИМИ (от латинского "эндо" - внутрь). Примером является образование оксида углерода (II) CO и водорода H2 из угля и воды, которое происходит только при нагревании
Информация о химии
Эйген (Eigen), Манфред
них месяцев второй мировой войны. По ее окончании он изучал физику и химию в Гёттингенском университете, где и получил степень доктора естественных наук в 1951 г. Его диссертация была посвящена определению удельной теплоемкости тя ...
Выводы
1. Проведён анализ психолого-педагогической, методической и химической литературы для определения современного состояния проблемы применения эксперимента в системе проблемного обучения. 2.&nb ...
La — Лантан
ЛАНТАН (лат. Lanthanum), La, химический элемент III группы периодической системы, атомный номер 57, атомная масса 138,9055, относится к редкоземельным элементам. Свойства: металл. Плотность 6,162 г/см3, tпл 920 °С. Название: ...