Получение платины из стоков процесса рафинирования металлов платиновой группы

Рефераты по химии / Получение платины из стоков процесса рафинирования металлов платиновой группы
Страница 9

Принципиальное отличие предлагаемого способа совместной обработки платинового сплава двумя и более электронными лучами от способов воздействия на сплав одним лучом, даже при многократности его проходов, заключается в том, что наряду с существованием первой плавящейся поверхности раздела фаз за счет теплового воздействия первого луча на твердое сырье и последней затвердевающей поверхности раздела фаз после отключения последнего луча, в рафинируемом материале создаются дополнительные плавящиеся и затвердевающие поверхности, что способствует более глубокой очистке от примесей и высокой степени извлечения ценного компонента. Если между первым и вторым лучом поддерживается твердо-жидкое состояние сплава, то второй и каждый последующий луч расплавляет предварительно перекристаллизовавшуюся твердую фазу с резко повышенным содержанием тугоплавкого компонента и процесс рафинирования продолжается. Таким образом, даже при одном проходе (от полного расплавления до полной кристаллизации сплава) процесс расплавления осуществляется дважды: как первоначального твердого сырья, так и перекристаллизованной твердой фазы из твердо- фазного состава сплава, т.е. зонная очистка от легкоплавких и тугоплавких примесей происходит тоже дважды.

Уточняем, что в составе твердой фазы твердо-жидкого состояния, которая подвергается расплавлению вторым лучом, содержится повышенное содержание более тугоплавкого компонента (например, платины в палладиевом сплаве) и при его дальнейшем расплавлении и окончательной кристаллизации в слиток, последний также имеет повышенное содержание этого компонента.

При увеличении количества лучей - твердая фаза каждого последующего твердо-жидкого состояния скачкообразно все более обогащается более тугоплавким компонентом (например, платиной в палладиевом сплаве), что при ее дальнейшем расплавлении электронным лучом и окончательной кристаллизации формирует максимально обогащенный и очищенный от примесей платиновый сплав.

Использование протяженного водоохлаждаемого кристаллизатора позволяет обеспечить достаточный градиент температур для направленной кристаллизации сплава и необходимую протяженную зону для отгонки легкоплавких и тугоплавких примесей по разным концам слитка рафинируемого сплава.

Выставление первого луча на поверхность металла в кристаллизаторе и его выдержка в неподвижном состоянии до расплавления металла в зоне его фокального пятна, последующее перемещение вдоль кристаллизатора и остановка позволяют создать активно перемешиваемый металлический расплав, диффузионные процессы в котором легко осуществимы и обеспечивают распределение примесей и испарение ценного компонента.

Дальнейшее включение второго луча и установка его в начальное положение первого позволяет создать между зонами термического воздействия лучей - зонами расплава, более холодную зону и, тем самым, условия для его кристаллизации.

При этом плавку ведут в условиях, характеризующихся расстоянием между фокальными пятнами лучей, которое выбирают таким, чтобы оно обеспечивало температуру в зоне между этими пятнами, соответствующую интервалу точек ликвидуса и солидуса платинового сплава. Это позволяет создать область постепенного охлаждения между зонами расплавления металла и благоприятных условий для образования первичных твердых частиц значительно обогащенной платины и примесей, равномерно распределенных в жидкой фазе с повышенным содержанием ценного компонента. Температура первой, по ходу плавки, горячей зоны в месте теплового воздействия первого луча достаточна для расплавления металла, температура промежуточной - между пятнами расплава, холодной зоны, обеспечивает сосуществование жидкой и твердой фаз, а температура металла в зоне теплового воздействия второго электронного луча также достаточна для расплавления.

Страницы: 4 5 6 7 8 9 10 11

Информация о химии

Хроматография

Хроматографический метод – физико-химический метод разделения компонентов сложных смесей газов, паров, жидкостей или растворенных веществ, основанный на использовании сорбционных процессов в динамических условиях. К ...

V — Ванадий

ВАНАДИЙ (лат. Vanadium), V (читается «ванадий»), химический элемент с атомным номером 23, атомная масса 50,9415. Природный ванадий представляет собой смесь двух нуклидов: стабильного 51V (99,76% по массе) и слабо радио ...

Ir — Иридий

ИРИДИЙ (лат. Iridium), Ir, химический элемент VIII группы периодической системы, атомный номер 77, атомная масса 192,22, относится к платиновым металлам. Свойства: плотность 22,65 г/см3, tпл 2447 °С. Название: от греческого ...