Микрогетерогенные системы

Рефераты по химии / Микрогетерогенные системы
Страница 4

• природы ПАВ;

• природы межфазной поверхности (границы: «твердая частица-жидкая среда»);

• степени заполнения поверхности;

• наличия в дисперсионной среде различных добавок. Изменение строения адсорбционного слоя отражается на его защитных свойствах.

Коллоидное ПАВ, имея дифильное строение, способно адсорбироваться как на полярных, так и на неполярных поверхностях, лиофилизируя их.

В соответствии с правилом уравнивания полярностей Ребиндера стабилизирующее действие ПАВ проявляется тем заметнее, чем больше первоначальная разница в полярностях твердой частицы и жидкой дисперсионной среды. Таким образом, при использовании в качестве стабилизатора коллоидного ПАВ реализуется адсорбционно-сольватный фактор устойчивости. Например, чтобы получить суспензию сажи в воде, используют олеат натрия, который неполярным углеводородным радикалом адсорбируется на частицах сажи, а полярная группа, направленная в сторону воды, ею гидратируется и тем самым поверхность частицы становится смачиваемой водой (гидрофилизируется), суспензия стабилизируется. Аналогичный процесс мы проводим, когда моем руки, загрязненные сажей, или моем посуду после жирной пищи.

Олеат натрия:

Олеат натрия можно использовать и для стабилизации суспензии силикагеля (SiO2) в бензоле (неполярная жидкость):

Бензол

В этом случае олеат натрия будет адсорбироваться на поверхности твердой частицы своей полярной группой, направляя углеводородный радикал в сторону бензола. Тем самым поверхность силикагеля становится гидрофобной, бензол ее смачивает, и суспензия стабилизируется.1

Но лучший стабилизирующий эффект достигается при более специфическом выборе ПАВ. Подбор ПАВ для стабилизации суспензий различного типа сходен с подбором ПАВ для стабилизации прямых и обратных эмульсий. Если необходимо стабилизировать суспензию полярных частиц в неполярной жидкости, то используется коллоидное ПАВ с низкими значениями чисел ГЛБ, обычно 3-6, т. е. малорастворимые в воде, известны случаи стабилизации ПАВ с 30 атомами углерода в цепи.

В пищевой промышленности для этих целей используются липоиды (лецитин), ланолин и т. д.

Если необходимо стабилизировать суспензию неполярных частиц в полярной жидкости, то применяются коллоидные ПАВ с высокими значениями чисел ГЛБ, обычно 8-13, т. е. достаточно хорошо растворимые в воде, такие соединения содержат 10-18 атомов углерода в цепи.

Максимум стабилизирующих свойств наблюдается у ПАВ с 14-16 атомами углерода (так называемый максимум Донана). В пищевой промышленности для этих целей часто используют пропиловый спирт, соли высших карбоновых кислот и т. д.

СТАБИЛИЗИРУЮЩЕЕ ДЕЙСТВИЕ ВМС И ПОЛИЭЛЕКТРОЛИТОВ

Строго говоря, в качестве стабилизаторов дисперсных систем, в том числе и суспензий, можно использовать только такие ВМС, которые являются поверхностно-активными веществами и их надо было бы называть поверхностно-активными высокомолекулярными веществами (ПАВМС или ВМПАВ). Чтобы оказать защитное действие, молекулам полимера необходимо адсорбироваться на поверхности частицы, а это может произойти только в том случае, .если при этом уменьшится поверхностное натяжение на границе раздела фаз. Эти вещества отличаются от коллоидных ПАВ тем, что для них характерно возникновение структурно-механического фактора устойчивости.

Таким образом, если в качестве стабилизатора применяются ВМС, то механизм их действия аналогичен механизму коллоидной защиты лиофобных золей: адсорбция молекул полимера на твердых частицах приводит к возникновению защитной оболочки, обладающей механической прочностью и упругостью, причем отмечено, что адсорбция ВМС является необратимой. Для этого вокруг частицы должен существовать избыток макромолекул, необходимый для образования насыщенного монослоя или даже полислоя. Электронномикроскопические снимки непосредственно доказали наличие таких защитных оболочек. Например, адсорбционные слои метилцеллюлозы на частицах полистирола имеют толщину 70-100 А˚. Таким образом, возникает структурно-механический фактор устойчивости, полностью предотвращающий коагуляцию частиц и возникновение между ними непосредственного контакта. Он играет главную роль в обеспечении агрегативной устойчивости суспензий. Обычно он сопровождается энтропийным фактором устойчивости,

Страницы: 1 2 3 4 5 6 7 8 9

Информация о химии

Eu — Европий

ЕВРОПИЙ (лат. Europium), Eu, химический элемент III группы периодической системы, атомный номер 63, атомная масса 151,96, относится к лантаноидам. Свойства: металл. Плотность 5,245 г/см3, tпл 826 °С. Название: от слова &laqu ...

Циглер (Ziegler), Карл

Немецкий химик-органик Карл Циглер родился в Хельсе, в семье Луизы (Ралл) Циглер и Карла Циглера, лютеранского священника. В 1916 г. он был принят в Марбургский университет, где изучал химию под руководством известного химика-орга ...

Sg — Сиборгий

СИБОРГИЙ (лат. Seaborgium), Sg, химический элемент VI группы периодической системы, атомный номер 106, атомная масса [266], наиболее устойчивый изотоп 266Sg. Свойства: радиоактивен. Металл, повидимому находится в твердом состояни ...