Исследования химии в 20-21 веках
Рефераты по химии / Исследования химии в 20-21 векахСтраница 13
Под действием даже очень слабого электрического поля нарушается равновесие ориентированных молекул, при этом изменяются оптические свойства жидкокристаллического вещества: например, из прозрачного оно переходит в светонепроницаемое.
Прогресс в создании новых жидкокристаллических материалов во многом зависит от успешного синтеза молекул сферической, стержне- или дискообразной формы. Одно из перспективных направлений в химии жидких кристаллов - формирование таких структур при синтезе полимеров.[6]
6.3.3 Оптические материалы
Прогресс в развитии световолоконной индустрии во многом определился технологической возможностью изготовления высокопрочной кварцевой нити путем химической конденсации паровой фазы. Толщина полученной таким образом кварцевой нити со стеклянным покрытием составляет примерно 0,1 толщины человеческого волоса. Совершенствование технологии изготовления кварцевых нитей позволило менее чем за десятилетний срок примерно в 100 раз сократить потери светового потока. Из новых оптических материалов, например, таких, как фторидные стекла, можно получить еще более прозрачные волокна. Волоконная оптика открывает чрезвычайно большие возможности для передачи огромного объема информации на большие расстояния. Уже сегодня многие телефонные станции, телевидение с успехом пользуются волоконно-оптической связью.
Современная химическая технология сыграла важную роль и при создании материалов для оптических устройств переключения, усиления и хранения оптических сигналов. Оптические устройства оперируют в новых временных масштабах обработки световых сигналов. Например, оптический переключатель срабатывает за одну миллионную миллионной доли секунды. В современных оптических устройствах используются ниобат лития и арсенид галлия-алюминия. Органические стереоизомеры, жидкие кристаллы и полиацетилены обладают лучшими оптическими свойствами, чем ниобат лития, и являются весьма перспективными материалами для новых оптических устройств.
6.4 Материалы диссоциации металлоорганических соединений
При термической диссоциации ряда металлоорганических соединений получаются чистые металлы различной твердой формы, обладающие уникальными свойствами. К металлоорганическим соединениям относятся:
- карбонилы: Mo(CO)6, Fe(CO)5, Ni(CO)4;
- ацетилацетонаты металлов: Pd(C5H702)2, Pt(C5H702)2,Ru(C5H702)3;
- дикарбонилацетонат родия: Rh(C5H702)2 (C0)2 и др.
Этим соединениям в газообразном состоянии присуща высокая летучесть. Они разлагаются при нагревании до 100 - 150 °С. В результате термической диссоциации можно получить чистую металлическую фазу в различных конденсированных формах: высокодисперсные порошки, металлические вискерсы, беспористые тонкопленочные материалы, ячеистые металлоны, металлические волокна и бумага.
Высокодисперсные порошки состоят из частиц малых размеров (до 1 - 3 мкм) и используются для производства металлокерамики - композиций металлов с оксидами, нитридами, боридами, синтезируемых методом порошковой металлургии. Металлические порошки, например железа и никеля, обладающие магнитными свойствами, применяются в радиоэлектронике и электротехнике.
Металлические вискерсы - нитевидные кристаллы диаметром 0,5-2,0 мкм и длиной 5-50 мкм. Для них характерна высокая прочность, примерно в 10 раз превышающая прочность самых высококачественных сталей, высокая устойчивость к окислению и необычные магнитные свойства. Подобные кристаллы формируются на активных центрах подложки, где в парамагнитных кластерах образуется своеобразная ступенчатая монокристаллическая структура.
Беспористые тонкопленочные материалы отличаются высокой плотностью упаковки атомов. По величине отражения света они приближаются к серебру. Беспористое тонкопленочное покрытие толщиной около 90 мкм надежно защищает металл от коррозии даже в самой агрессивной среде. Их коррозионная стойкость примерно в 5 раз выше, чем, например, гальванических покрытий.
Ячеистые металлы образуются при осаждении металла в результате проникновения паров металлорганических соединений в поры другого материала, где формируется ячеистая металлическая структура.
Информация о химии
Дальтон (Dalton), Джон
Английский физик и химик Джон Дальтон родился в деревне Иглсфилд в Камбеоленде в семье ткача. Образование он получил самостоятельно, если не считать уроков по математике, которые он брал у слепого учителя Дж.Гауфа. В 1781–17 ...
B — Бор
БОР (лат. Borum), В, химический элемент III группы периодической системы, атомный номер 5, атомная масса 10,811. Природный бор состоит из двух стабильных нуклидов 10В (19,57%) и 11В. Конфигурация электронной оболочки: 1s22s2p1. Р ...
Бутенандт (Butenandt), Адольф Фридрих Иоганн
Немецкий биохимик и физиолог Адольф Фридрих Иоганн Бутенандт родился в Бремерхафенена-Лее, в семье бизнесмена Отто Бутенандта и Вильгельмины (Томпторд) Бутенандт. Окончив среднюю школу в Бремерхафене, он в 1921 г. поступил в Марбу ...