Интересные и опасные свойства ртути

Рефераты по химии / Интересные и опасные свойства ртути
Страница 6

Еще раньше, в начале XX в., внимание теплотехников привлекало сообщение о работах доктора Эммета из США. Эммет первым попытался использовать в паровых котлах не воду, а ртуть. Его опытная установка мощностью 2000 л. с. работала и потребляла на 45% меньше топлива, чем обычный паровой котел с генератором. Конечно, не обошлось без дискуссий: ртуть не вода, из реки ее не зачерпнешь! Возражений против использования ртути в паровых котлах было больше чем достаточно. Исследования, однако, продолжались.

Весьма успешной была работа советских научно-исследовательских институтов по проблеме использования ртутного котла и турбины. Были доказаны экономичность ртутно-паровых турбин и возможность создания так называемого ртутно-водяного бинарного цикла, в котором тепло конденсирующегося ртутного пара используется в специальном конденсаторе-испарителе для получения водяного пара. А до этого ртутный пар успевает покрутить вал генератора. Полученный водяной пар приводит в движение второй электротурбогенератор . В подобной системе, работающей только на водяном паре, удается в лучшем случае достигнуть КПД 30%. Теоретический же КПД ртутно-парового цикла (45%) намного выше, чем у газовой турбины (18 . 20%) и дизеля (35 .39%). В 50-х годах в мире существовало уже несколько таких энергетических установок мощностью до 20 тыс. киловатт. Дальше дело, к сожалению, не пошло, главным образом из-за нехватки ртути.

Вакуумные установки в наше время очень важны для науки и промышленности. И здесь ртуть встречается не только как заполнитель трубок вакуумметра. Еще в 1916 г. Ирвинг Ленгмюр создал вакуум-насос, в котором испарялась и конденсировалась ртуть. При этом в системе, связанной с насосом, создавалось остаточное давление в сотни миллионов раз меньше атмосферного.

Современные ртутные диффузионные насосы дают еще большее разрежение: стомиллионные доли миллиметра ртутного столба.

Изучение ультрафиолетовых лучей продвигалось медленно до тех пор, пока не был создан искусственный источник этих лучей. Им оказались пары ртути в вакууме. Когда через ртутные пары проходит электрический ток, они испускают видимое голубое свечение и много ультрафиолетовых лучей. Чем выше температура паров ртути, тем интенсивнее излучение ультрафиолетовых лучей в ртутно-кварцевой лампе.

Видимое свечение паров ртути использовано в конструкциях мощных ламп освещения. Лампы дневного света – это разрядные трубки, в которых находятся инертные газы и пары ртути. А что такое "холодный свет", пояснять, вероятно, излишне. Из каждого рубля, который мы платим "за свет", на долю действительно светового излучения приходятся лишь четыре копейки. Остальные 96 – за ненужное тепло, излучаемое обычными электролампами. Лампы дневного света намного экономичнее.

Ртуть и ее специфическое отравляющее действие

При вдыхании воздуха, содержащего пары ртути в концентрации не выше 0,25 мг/м3, последняя задерживается и накапливается в лёгких. В случае более высоких концентраций ртуть всасывается неповрежденной кожей. В зависимости от количества ртути и длительности ее поступления в организм человека возможны острые и хронические отравления, а также микромеркуриализм. В наибольшей степени к ртутным отравлениям чувствительны женщины и дети.

Острые отравления парами ртути

Острое отравление ртутью проявляется через несколько часов после начала отравления. Симптомы острого отравления: общая слабость, отсутствие аппетита, головная боль, боль при глотании, металлический вкус во рту, слюнотечение, набухание и кровоточивость десен, тошнота и рвота. Как правило, появляются сильнейшие боли в животе, слизистый понос (иногда с кровью). Нередко наблюдается воспаление легких, катар верхних дыхательных путей, боли в груди, кашель и одышка, часто сильный озноб. Температура тела поднимается до 38-40°С. В моче пострадавшего находят значительное количество ртути. В тяжелейших случаях через несколько дней наступает смерть пострадавшего. В конце ХIХ века был описан эксперимент со вдыханием нескольких грамм ртути, испаряемых с железного листа: из-за быстрого испарения острое отравление не наступило.

Страницы: 1 2 3 4 5 6 7

Информация о химии

Тодд (Todd), Александер Робертус

Шотландский химик Александер Робертус Тодд родился в семье бизнесмена Александера Тодда и Джин (Лэури) Тодд в Глазго. Глазго был городом, где прошли детство и юность будущего ученого. Здесь он учился в школе Аллена Глена. Здесь же ...

Супрамолекулярная химия

Супрамолекулярная (надмолекулярная) химия (Supramolecular chemistry) — междисциплинарная область науки, включающая химические, физические и биологические аспекты рассмотрения более сложных, чем молекулы, химических систем, с ...

Ca — Кальций

КАЛЬЦИЙ (лат. Calcium), Ca, химический элемент II группы периодической системы, атомный номер 20, атомная масса 40,078; относится к щелочноземельным металлам. Свойства: серебристо-белый металл, плотность 1,54 г/см3, tпл 842 ° ...