Кислотно-основные свойства аминокислот
Рефераты по химии / Белки и нуклеиновые кислоты / Кислотно-основные
свойства аминокислотСтраница 1
Кислотно-основные свойства аминокислот связаны с наличием в их структуре двух ионизируемых групп-карбоксильной и аминогруппы, поэтому амнокислоты могут проявлять свойства как кислот, так и оснований, т.е. они являются амфотерными соединениями. В кристаллическом состоянии и в водных растворах a-аминокислоты существуют в виде биполярных ионов, называемых также цвиттерионами. Ионное строение обуславливает некоторые особенности свойств a-аминокислот: высокую температуру плавления (200-300°С), нелетучесть, растворимость в воде и нерастворимость в неполярных органических растворителях. С растворимостью аминокислот в воде связана их всасываемость и транспорт в организме. Ионизация молекул аминокислот зависит от рН раствора. Для моноаминомонокарбоновых кислот процесс диссоциации имеет следующий вид:
В сильно кислых растворах аминокислоты присутствуют в виде положительных ионов, а в щелочных – в виде отрицательных.
Кислотно-основные свойства аминокислот можно объяснить исходя из теории кислот и оснований Бренстеда-Лоури. Полностью протонированная a-аминокислота (катионная форма) с позиции теории Бренстеда является двухосновной кислотой, содержащей две кислотные группы:недиссоциированную карбоксильную группу (– СООН) и протонированную аминогруппу (NН3), которые характеризуются соответствующими значениями рКa1 и рКa2.
Величины рК для аминокислот определяют по кривым титрования. Рассмотрим кривую титрования аланина (рис. 1).
Рис. 1 – кривые, полученные при титровании 0,1М раствора аланина 0,1М раствором HCl (а) и 0,1М растором NaOH (б).
Из кривой титрования аланина следует, что карбоксильная группа имеет рКa1=2,34, а протонированная аминогруппа рКa2 = 9,69. При рН = 6,02 аланин существует в виде биполярного иона, когда суммарный электрический заряд частицы равен 0. При этом значении рН молекула аланина электронейтральна. Такое значение рН называют изоэлектрической точкой и обозначают рНиэт или рI. Для моноаминомонокарбоновых кислот изоэлектрическая точка рассчитывается как среднее арифметическое двух значений рКa. Например для аланина она равна:
рI = Ѕ × (рКa1 + рКa2) = Ѕ × (2,34 + 9,69) = 6,02
При значении рН, превышающем изоэлектрическую точку, аминокислота заряжается отрицательно, а при значении рН ниже рI аминокислота несет суммарный положительный заряд. Например, при рН = 1,0 все молекулы аланина существуют в форме ионов
с суммарным зарядом +1. При рН = 2,34, когда имеется смесь равных количеств ионов
суммарный заряд = +0,5. Аналогичным образом можно предсказать знак и величину суммарного заряда для любой другой аминокислоты при любом значении рН.
Аминокислоты с ионизируемой группой в радикале имеют более сложные кривые титрования, складывающиеся из 3-ох участков, соответствующих трем возможным стадиям ионизации, и, следовательно, они имеют три значения рК (рКa1, рКa2 и рКR). Ионизация кислых аминокислот, например аспарагиновой, состоит из следующих последовательных стадий:
Изоэлектрические точки таких аминокислот определяются также присутствием ионизируемой группой радикала, наряду с a-амино и a-карбоксильными группами. Для моноаминодикарбоновых кислот изоэлектрические точки смещены в кислую область рН и определяются как среднее арифметическое между величинами рК для двух карбоксильных групп (рI аспарагиновой кислоты = 2,97). Для основных аминокислот рI смещены в щелочную область и вычисляются как среднее арифметическое между величинами рК для двух протонированных аминогрупп (рI лизина = 9,74).
Кислотно-основные свойства аминокислот используются для разделения и последующей идентификации аминокислот методами электрофореза и ионообменной хроматографии. Оба эти метода основаны на различиях в знаке и величине суммарного электрического заряда при данном значении рН.
Информация о химии
Нанокапсулы с витаминами сделают напитки полезнее
Исследователи из Израиля создали из природных пищевых материалов нанокапсулы, которые могут быть загружены жирорастворимыми витаминами и другими липофильными микронутриентами, полезными для здоровья. Полученные нанокапсулы можно ...
Паули (Pauli), Вольфганг Эрнст
Австрийско-швейцарский физик Вольфганг Эрнст Паули родился в Вене. Его отец, Вольфганг Йозеф Паули, был известным физиком и биохимиком, профессором коллоидной химии в Венском университете. Его мать, Берта (в девичестве Шютц) Паули ...
Бекетов, Николай Николаевич
Русский химик Николай Николаевич Бекетов, один из основоположников физической химии, родился в с. Новая Бекетовка Пензенской губернии. Учился в 1-й Петербургской гимназии; в 1844 г. поступил в Петербургский университет, но с 3-го ...