Характеристика золотосодержащего сырья и методы его переработки
Рефераты по химии / Переработка золотосодержащего сырья / Характеристика золотосодержащего сырья и методы его переработкиСтраница 2
Окисление пирита начинается при температуре 450—500° С. Процесс протекает с образованием в качестве промежуточного продукта пирротина FeS2 + О2 = FeS + SO2, который окисляется до магнетита 3FeS + 5O2 = Fе3O4 + 3SO2 и далее до гематита 2Fе3О4 + ½О2= ЗFе2О3.
При температурах выше 600 °С окислению пирита предшествует его диссоциация с образованием пирротина 2FeS2= 2FeS + S2, который затем окисляется также до гематита.
Показатели окислительного обжига зависят от целого ряда параметров, из которых наиболее важна температура. При недостаточно высокой температуре обжига (ниже 500° С) скорость окислительных реакций невелика, и в огарке может присутствовать заметное количество не полностью окисленных частиц пирита. Цианирование такого огарка будет сопровождаться значительными потерями золота вследствие его недостаточно полного вскрытия. С повышением температуры обжига окисление пирита протекает быстрее и полнее. Однако при температурах, превышающих 900—950° С, возможно частичное оплавление огарка вследствие образования относительно легкоплавких эвтектических смесей, состоящих из пирротина и магнетита. Появление расплава ведет к спеканию материала и получению плотных малопористых огарков, плохо поддающихся цианированию.
Существенно на показатели обжига влияет концентрация кислорода в газовой фазе. При низкой концентрации кислорода скорость окисления пирита снижается, что может привести к недостаточно полному вскрытию золота. В то же время при чрезмерно высокой концентрации кислорода скорость процесса может стать настолько высокой, что при недостаточно хороших условиях теплообмена тепло экзотермических реакций не будет успевать рассеиваться в окружающей среде и температура обжигаемых зерен превысит опасный предел (900—950° С). В результате этого огарок оплавляется и структура его будет недостаточно пористой. Практически установлено, что оптимальная температура обжига пиритных концентратов зависит от их вещественного состава и колеблется в пределах 500—700° С. Расчеты и экспериментальные исследования показывают, что вследствие «перегрева» огарка температура его может превышать температуру в печи на 300— 400 град. Взаимосвязь между скоростью окисления пирита и температурой его зерен указывает на то, что для получения пористого огарка скорость окислительных реакций необходимо регулировать таким образом, чтобы температура частиц при обжиге не превышала 900—950° С. Чтобы достигнуть этого, надо уменьшить количество воздуха, подаваемого в печь, или снизить концентрацию кислорода в газовой фазе. Вместе с тем уменьшить «перегрев» обжигаемых частиц можно путем улучшения условий теплообмена между материалом и окружающей средой. Этот путь более рационален, так как позволяет поддерживать оптимальную температуру материала в печи без соответствующего уменьшения скорости обжига. Условия теплообмена между обжигаемым концентратом и окружающей средой улучшаются при интенсивном перемешивании материала в печи. Поэтому осуществление процесса обжига на поду в условиях относительно слабого перемешивания материала создает значительную опасность «перегрева» огарка и его частичного оплавления. Проведение же процесса в печах кипящего слоя, где вследствие интенсивного перемешивания условия теплообмена исключительно благоприятны, позволяет значительно точнее выдерживать температурный режим обжига, не допуская оплавления огарка.
Поведение арсенопирита при окислительном обжиге во многом аналогично поведению пирита. Интенсивное окисление арсенопирита начинается при температуре примерно 450° С и протекает с образованием в качестве промежуточных продуктов пирротина и магнетита:
2FeAsS + 1,5O2= 2FeS + As2O3 (газ),
3FeS + 5O2 = Fе3O4 + 3SO2,
2Fе3O4 + 0,5O2= ЗFе2О3.
При температурах выше 600° С окислению арсенопирита предшествует его диссоциация: 4FeAsS = 4 FeS + As4 (газ).
Информация о химии
Рауль (Raoult), Франсуа Мари
Французский химик Франсуа Мари Рауль родился в Фурн-ан-Веп, Нормандия. Первоначальное образование получил в Лионской коллегии; учился в Парижском университете. С 1853 г. был учителем в Реймском лицее, затем в колледже в Сен-Дье, а ...
Винклер (Winkler), Клеменс Александр
Немецкий химик Клеменс Александр Винклер родился во Фрейберге; его отец был химиком-металлургом. После окончания реального училища в Дрездене и ремесленной школы в Хемнице Винклер поступил во Фрейбергскую горную академию, которую ...
Металлоорганическая химия
Металлоорганическая химия — раздел химии, возникший на стыке органической химии и неорганической химии. Предметом изучения металлоорганической химии являются органические производные металлов, содержащие связь углерод-металл ...