Характеристика золотосодержащего сырья и методы его переработки
Рефераты по химии / Переработка золотосодержащего сырья / Характеристика золотосодержащего сырья и методы его переработкиСтраница 5
Для проведения обжига в автогенном режиме содержание серы в обжигаемом материале не должно быть меньше 16—20%. При более высоком содержании возникает необходимость отвода избыточного тепла. На практике это осуществляют, подавая дополнительное количество воды либо в питание печи, либо непосредственно в кипящий слой.
Обжиг концентратов в печах кипящего слоя сопровождается большим уносом пыли (40—50% исходного материала). Поэтому тщательная очистка газов от пыли — одна из центральных проблем. Применение одних циклонов часто не дает необходимой степени очистки газов. В этих случаях систему пылеулавливания дополняют электрофильтрами. На некоторых предприятиях практикуют извлечение из газов трехокиси мышьяка. С этой целью отходящие из печи газы тщательно очищают от пыли и охлаждают;
сконденсированную трехокись мышьяка в виде тонкого порошка улавливают в мешочных фильтрах. При необходимости газы печей кипящего слоя можно использовать для производства серной кислоты.
По сравнению с подовыми печами печи кипящего слоя — весьма эффективные аппараты для обжига золотосодержащих концентратов. Основные их преимущества следующие:
1) большая удельная производительность, составляющая около 5 т/{м2 -сутки), что примерно в 20 раз выше производительности подовых печей;
2) более высокое качество получаемых огарков, обусловленное возможностью точного регулирования температурного и кислородного режимов обжига.
Однако наряду с преимуществами обжиг в кипящем слое имеет некоторые недостатки, главный из которых большой пылеунос. Это обстоятельство требует сооружения сложных пылеулавливающих систем.
Рассмотренная схема переработки сульфидных золотосодержащих концентратов путем их окислительного обжига с последующим планированием огарка является весьма распространенной, но не единственно возможной схемой переработки таких продуктов.[1]
В ряде случаев флотационные концентраты, получаемые на золотоизвлекательных предприятиях, направляют на медеплавильные заводы, где их плавят совместно с медными концентратами. Золото при этом переходит в штейн и, в конечном счете, концентрируется на анодном шламе, откуда его извлекают специальными методами (см. с. 282). Для переработки флотационных концентратов с высоким содержанием мышьяка такой метод неприемлем, так как мышьяк затрудняет производство чистой меди. Поэтому золото-мышьяковые концентраты перед отправкой на медеплавильный завод должны быть подвергнуты окислительному обжигу для удаления мышьяка.
Окислительный обжиг можно применить также при переработке безмышьяковистых пиритных концентратов с целью производства серной кислоты.
Способ переработки сырых или обожженных концентратов на медеплавильных заводах не требует больших затрат и позволяет извлекать золото даже из таких упорных материалов, применительно к которым окислительный обжиг с последующим цианирование огарка не дает положительных результатов. Недостаткам этого способа являются повышенные расходы на перевозку и потери золота при транспортировке и плавке концентрата.
Метод переработки флотационных концентратов путем окислительного обжига с последующим цианированием огарка имеет известнее недостатки. Главный из них—повышенные потери золота с хвостами цианирования. Несмотря на все принимаемые меры, окислительный обжиг неизбежно сопровождается частичным спеканием материала и образованием на поверхности золотин пленок из легкоплавких соединений. В результате этого некоторое количество золота оказывается недоступным действию цианистых растворов и теряется с хвостами цианирования.
Стремление повысить извлечение золота из сульфидных флотационных концентратов привело к разработке ряда других способов: окислительно-хлорирующий обжиг; хлоридовозгонка; автоклавное выщелачивание.
Информация о химии
One-pot синтез кандидатов в противоопухолевые препараты
Исследователи из Германии разработали простой, быстрый и протекающий с высоким выходом целевых продуктов каскадный синтез полициклических соединений, похожих по структуре на природные индолалкалоиды. Полученные соединения мешают д ...
Уильямсон (Williamson) Александер Уильям
Английский химик-органик Александр Уильям Уильямсон родился в Лондоне. Изучал химию в Гейдельбергском университете у Леопольда Гмелина (1840-1843) и в Гисенском университете у Юстуса Либиха. В 1848 г. стал профессором химии универ ...
Y — Иттрий
ИТТРИЙ (лат. Yttrium), Y, химический элемент III группы периодической системы, атомный номер 39, атомная масса 88,9059, относится к редкоземельным элементам. Свойства: металл. Плотность 4,472 г/см3, tпл 1528 °С. Название: на ...