Теория возмущений в приближении граничных МО
Рефераты по химии / Квантово-химические правила отбора элементарных стадий /  Теория возмущений в приближении граничных МОСтраница 1
        
Из правила БЭП следует, что знание энергетического состояния исходных
и конечных
продуктов позволяет оценивать кинетические характеристики ЭС (вероятность реализации элементарного акта). Метод возмущения МО (МВМО), оперируя только граничными занятыми и свободными МО (ВЗМО, НСМО) и зарядами (на атомах в молекулах и на атомных орбиталях в МО) в исходных
реагентах, позволяет в ряде случаев предсказать вероятность, направление и эффективностьвзаимодействия двух реагентов.
Чем эффективнее взаимодействие, тем ниже Еакт и тем выше вероятность согласованного (элементарного) акта.
Если энергии граничных орбиталей c1 и c2 близки, то энергия взаимодействия определяется резонансным (обменным) интегралом b12
 (28) 
где H – гамильтониан системы, t – элемент объема, в котором происходит перекрывание орбиталей. Величина b12 в этом случае определяет и величину расщепления новых МО Y1 и Y2 или энергию стабилизации e = b12.
 
Если энергии c1 и c2 различаются сильно, то величина e определяется не только b12, а зависит и от разности энергий c1 и c2 по уравнению (29):
 (29) 
где Е1 и Е2 – энергии низшей и высшей МО
 
Чем больше величина e , тем стабильнее образующийся аддукт, тем ниже Еакт его образования.
МВМО не дает оценки Е переходного состояния и Еакт. Рассчитывается лишь разница между полной электронной энергией реагирующей системы Е и энергиями исходных реагентов 
 и 
 (малое возмущение): 
DЕ = Е – 
 – 
, (30) 
справедливое только для начальных участков координаты реакции. Только на больших расстояниях между реагентами не происходит смешения МО, нет межмолекулярного отталкивания и можно говорить о чистых МО исходных реагентов. Вместе с тем, такое приближение позволяет оценить наиболее вероятный путь реакции.
Энергию возмущения DЕ при взаимодействии реагентов S и Т (S и Т – молекулы или активные центры в молекулах) рассчитывают по уравнению (31):
 (31) 
В случае только двух граничных МО (например, молекул донора и акцептора) уравнение упрощается (32):
 (32) 
В уравнениях (31, 32) qS и qT – эффективные заряды на центрах S и Т, RST – расстояние между центрами в ходе взаимодействия, e – диэлектрическая проницаемость среды. Таким образом, первый член (возмущение 1го порядка) отражает энергию кулоновского взаимодействия. Второй член (возмущение 2го порядка) определяет энергию орбитального перекрывания и включает: gST – коэффициент, учитывающий заселенность электронами орбиталей c1 и c2, 
 и 
 – квадраты коэффициентов при атомных орбиталях центров S и Т волновой функции граничных МО c1 и c2, 
 – квадрат обменного интеграла, Е1 и Е2 – энергии орбиталей c1 и c2. Разные случаи заселенности орбиталей c1 и c2 реагирующих частиц и коэффициент gST приведены ниже: 
|  
 Число электронов на граничных орбиталях  |   
 gST  |  
|  
 2 + 2, 0 + 0  |   
 0 (нет перекрывания)  |  
|  
 2 + 1, 1 + 0  |   
 1  |  
|  
 2 + 0, 1 + 1  |   
 2 (самое сильное перекрывание)  |  
Информация о химии
Ba — Барий
БАРИЙ (лат. Barium), Ba, химический элемент II группы периодической системы, атомный номер 56, атомная масса 137,33; относится к щелочноземельным металлам. Свойства: серебристо-белый мягкий металл. Плотность 3,78 г/см3, tпл 727 & ...
Майер (von Mayer), Юлиус Роберт фон
Немецкий врач и физик Юлиус Роберт фон Майер родился в Хейльбронне в семье аптекаря. Получив медицинское образование, он несколько месяцев работал в клиниках Парижа, после чего отправился в качестве корабельного врача на о. Ява. В ...
Химия полимеров
Химия полимеров — раздел химии, в котором изучаются химические свойства полимеров. Делится на разделы: физическая химия полимеров, структурная и т. д. Синоним — химия высокомолекулярных соединений — раздел орган ...
