Развитие хроматографии

Рефераты по химии / Развитие хроматографии
Страница 5

Как и в газовой хроматографии, в современной жидкостной хроматографии применяют детекторы, позволяющие непрерывно фиксировать концентрацию определяемого вещества в потоке жидкости, вытекающей из колонки.

Единого универсального детектора для жидкостной хроматографии не существует. Поэтому в каждом конкретном случае следует подбирать наиболее подходящий детектор. Наибольшее распространение получили ультрафиолетовый, рефрактометрический, микроадсорбционный и транспортный пламенно-ионизационный детекторы.

Спектрометрические детекторы. Детекторы этого типа являются высокочувствительными селективными приборами, позволяющими определять в потоке жидкой фазы весьма малые концентрации веществ. Их показания мало зависят от колебаний температуры и других случайных изменений среды. Одна из важных особенностей спектрометрических детекторов заключается в прозрачности большинства применяющихся в жидкостно-адсорбционной хроматографии растворителей в рабочей области длин волн.

Чаще всего применяют поглощение в УФ, реже в ИК области. В УФ области применяют приборы, работающие в широком диапазоне – от 200 нм до видимой части спектра, либо на определенных длинах волн, чаще всего на 280 и 254 нм. В качестве источников излучения применяются ртутные лампы низкого давления (254 нм), среднего давления (280 нм) и соответствующие фильтры.

Микроадсорбционные детекторы. В основе действия микроадсорбционных детекторов лежит выделение теплоты при адсорбции вещества на адсорбенте, которым заполнена ячейка детектора. Измеряется, однако, не теплота, а температура адсорбента, до которой он нагревается в результате адсорбции.

Микроадсорбционный детектор – достаточно высокочувствительный инструмент. Его чувствительность зависит прежде всего от теплоты адсорбции.

Микроадсорбционные детекторы являются универсальными, пригодными для детектирования как органических, так и неорганических веществ. Однако на них трудно получить достаточно четкие хроматограммы, особенно при неполном разделении компонентов смеси.

5.

Хроматография на жидкой неподвижной фазе

а)Газо-жидкостная хроматография

Газо-жидкостная хроматография – газохроматографический метод, в котором неподвижной фазой является малолетучая жидкость, нанесенная на твердый носитель.

Этот вид хроматографии используется для разделения газов и паров жидкостей.

Основное различие газо-жидкостной от газо-адсорбционной хроматографии заключается в том, что в первом случае метод основан на использовании процесса растворения и последующего испарения газа или пара из жидкой пленки, удерживаемой твердым инертным носителем; во втором случае процесс разделения основан на адсорбции и последующей десорбции газа или пара на поверхности твердого вещества – адсорбента.

Процесс хроматографирования схематически можно представить следующим образом. Смесь газов или паров летучих жидкостей вводят потоком газа-носителя в колонку, заполненную неподвижным инертным носителем, на котором распределена нелетучая жидкость (неподвижная фаза). Исследуемые газы и пары поглощаются этой жидкостью. Затем компоненты разделяемой смеси селективно вытесняются в определенном порядке из колонки.

В газо-жидкостной хроматографии применяется ряд детекторов, специфически реагирующих на любые органические вещества или же на органические вещества с определенной функциональной группой. К их числу относятся ионизационные детекторы, детекторы электронного захвата, термоионные, спектрофотометрические и некоторые другие детекторы.

Пламенно-ионизационный детектор (ПИД). Работа ПИД основана на том, что органические вещества, попадая в пламя водородной горелки, подвергаются ионизации, вследствие чего в камере детектора, являющейся одновременно ионизационной камерой, возникает ток ионизации, сила которого пропорциональна количеству заряженных частиц.

ПИД чувствителен только к органическим соединениям и не чувствителен или очень слабо чувствителен к таким газам, как воздух, оксидам серы и углерода, сероводороду, аммиаку, сероуглероду, парам воды и к ряду других неорганических соединений. Нечувствительность ПИД к воздуху позволяет применять его для определения загрязнений воздуха различными органическими веществами.

Страницы: 1 2 3 4 5 6 7

Информация о химии

Бертло (Berthelot), Пьер Эжен Марселен

Французский химик и общественный деятель Пьер Эжен Марселен Бертло родился в Париже в семье врача. Вначале Бертло изучал медицину, но под влиянием лекций Т.Пелуза и Ж.Дюма решил посвятить себя химии. Окончив Парижский университет ...

Дильс (Diels), Отто Пауль Герман

Немецкий химик Отто Пауль Герман Дильс родился в Гамбурге и был вторым из трех сыновей Германа Дильса, учителя и известного филолога, и Берты Дильс (в девичестве Дубель). Когда Отто исполнилось два года, семья переехала в Берлин, ...

H — Водород

ВОДОРОД (лат. Hydrogenium), H, химический элемент с атомным номером 1, атомная масса 1,00794. Химический символ водорода Н читается в нашей стране «аш», как произносится эта буква по-французски. Природный водород сост ...