Механизм формирования фазовой структуры эпоксидно-каучуковых систем
Рефераты по химии / Механизм формирования фазовой структуры эпоксидно-каучуковых системСтраница 5
Предложенный механизм структурообразования позволяет выявить характер связи между термодинамической совместимостью компонентов и фазовой структурой отвержденных модифицированных систем. Размер частиц дисперсной фазы эпоксидно-каучуковой системы определяется величинами wР и tР (временем роста). Исходная совместимость компонентов систем определяет запас термодинамической устойчивости раствора олигомерного каучука в эпоксидном олигомере к расслоению. Чем больше сродство между компонентами, тем больше время жизни отверждающегося раствора в однородном фазовом состоянии и тем позже осуществляется первая нуклеация; т. е. увеличение совместимости компонентов приводит к сдвигу начала фазового разделения в сторону больших глубин превращения, к уменьшению времени роста и, как следствие, к уменьшению размера частиц, выделившихся в начале процесса. Действительно, размер частиц, выделившихся после первой нуклеаций (второй пик кривых распределения частиц гетерофазы по размерам (рис. 6), уменьшается с ростом совместимости. Кроме того, высокая степень пересыщения в системах наиболее глубоко совмещающихся компонентов приводит к более раннему наступлению диффузионного контроля. В результате скорость и время роста вновь образованных частиц дисперсной фазы, выделившихся на диффузионно-контролируемом этапе процесса (первый пик кривых распределения частиц каучука по размерам), увеличивается. Следовательно, с увеличением термодинамического сродства между компонентами эпоксидно-каучуковых систем распределение частиц дисперсной фазы по размерам сужается.
Таким образом, совместимость компонентов эпоксидно-каучуковых систем на стадии их смешения предопределяет запас термодинамической устойчивости отверждающейся системы к фазовому разделению. Механизм формирования фазовой структуры систем определяется кинетическими условиями реализации термодинамически равновесного фазового состояния в ходе отверждения эпоксидного олигомера, которые связаны с соотношением скорости химического превращения эпоксидного олигомера и взаимной диффузии компонентов эпоксидно-каучуковых систем. Зная это, можно направленно регулировать фазовое разделение, а следовательно, количество и размеры частиц гетерофазы, определяющие эксплуатационные характеристики модифицированных эпоксидно-каучуковых композиций.
ЛИТЕРАТУРА
1. Многокомпонентные полимерные системы / Под ред. Голда Р. М.: Химия, 1974.
2. Бакнел К. Б. Ударнопрочные пластики. М.: Химия, 1981.
3. Полимерные смеси / Под ред. Пола Д., Ньюмена С. М.: Мир, 1981, т. 1, 2.
4. Рогинская Г. Ф., Волков В. П., Чалых А. Е., Авдеев Н. И., Розенберг Б. А. Высокомолек. соед. А, 1979, т. 21, № 9, с. 2111.
5. Малкин А. Я., Чалых А. Е. Диффузия и вязкость полимеров. М.: Химия, 1979, с. 189.
6. Gallacher L., Betelheim F. J. Polymer Sci., 1962, v. 53, № 166, p. 697.
7. Кленин В. И., Щеголев С. Ю., Лаврушин В. И. Характеристические функции светорассеяния дисперсных систем. Саратов: Изд-во Саратовск. ун-та, 1977.
8. Петрова И. И., Чалых А. Е., Авганов А. А., Лукъянович В. М. Высокомолек соед. А, 1973, № 6, т. 15, с. 1421.
9. Аналитическая химия полимеров. М.: Изд-во иностр. лит., 1963, т. 1, с. 126.
10. Ли X., Невилл К. Справочное руководство по эпоксидным смолам. М.: Энергия, 1973, с. 128.
11. И. Белов И. Б. Каучук и резина, 1981, № 1, с. 36.
12. Волков В. П., Рогинская Г. Ф., Чалых А. Е., Розенберг Б. А. Успехи химии 1982, т. 51, № 10, с. 1733.
13. Берлин А. А., Вольфсон С. А., Ениколопян Н. С. Кинетика полимеризационных процессов. М.: Химия, 1978, с. 236.
Информация о химии
Циглер (Ziegler), Карл
Немецкий химик-органик Карл Циглер родился в Хельсе, в семье Луизы (Ралл) Циглер и Карла Циглера, лютеранского священника. В 1916 г. он был принят в Марбургский университет, где изучал химию под руководством известного химика-орга ...
Kr — Криптон
КРИПТОН (лат. Krypton), Kr, химический элемент VIII группы периодической системы, атомный номер 36, атомная масса 83,80, относится к инертным, или благородным, газам. Свойства: плотность 3,745 г/л, tкип 153,35 °С. Название: ...
Агрикола (Agricola), Георг
24 марта 1490 г. – 21 ноября 1555 г. Георг АгриколаНемецкий учёный в области горного дела и металлургии Георг Агрикола [настоящая фамилия Бауэр (Bauer); лат. agricola – земледелец, перевод немецкого слова Bauer] родил ...