Механизм и кинетика переходных процессов на межфазных границах электрохимических преобразователей энергии на основе низкотемпературных твердых электролитов

Рефераты по химии / Механизм и кинетика переходных процессов на межфазных границах электрохимических преобразователей энергии на основе низкотемпературных твердых электролитов
Страница 3

Предложена методика расчета скорости химического взаимодействия электролита с йодом из релаксации потенциала индифферентного электрода после гальваностатического анодного разложения электролита на этом электроде [7,16], Методика позволила определить величину убыли йода с положительного электрода источника тока и оценить скорость деградации источника тока с йодным электродом.

По аналогии с медным электродом, объяснена серебряного электрода. «при малых отклонениях от равновесного потенциала протеканием реакции с участием электронных дефектов при блокировании реакции осаждения – растворения серебра слоем оксидов на поверхности серебра [1].

Показано, что при потенциалах более 7… 10 мВ слой оксидов разрушается и реакция растворения – осаждения серебра деблокируется [3,5]. Для интервала потенциалов 30… 100 мВ получены основные характеристики процесса растворения серебряного электрода: величина свободной граничной энергии ступеней роста, критическая работа образования центров растворения и количество атомов в критическом центре растворения [4]. Для потенциалов выше 120 мВ выявлена лимитирующая стадия растворения серебра и оценена величина плотности тока обмена [2]. Эти исследования оказали значительное влияние на процесс разработки технологии серебряного электрода для различных устройств с электролитом АШ15.

Исследована кинетика электрохимической реакции на границе амальгама серебра – Rbls [24]. Получены величины плотности тока обмена и порядка электрохимической реакции. Выявлено, что наряду с ионами серебра в электролит переходят ионы ртути. Результаты этих исследований подтвердили, что при средних потенциалах лимитирующей стадией электродного процесса на серебряном электроде является кристаллизация серебра.

Проведено компьютерное моделирование интенсивности электрохимического растворения металлического распределенного электрода [17], что выявило основные пути оптимизации при разработке реальных электродов.

Разработана методика выращивания кристаллов электролитов солевой системы CuCl – RbCl из водного раствора соляной кислоты и электролитов системы CuCl – Cul – RbCl из водного раствора аммиака [12,35,36]. Полученные кристаллы содержат значительно меньшее количество электронных дефектов и перспективны для применения в преобразователях энергии и для исследования физических и электрохимических свойств медьпроводящих твердых электролитов.

Практическая значимость полученных результатов

Понимание кинетических закономерностей металлических электродов позволило обосновать пути повышения удельных электрических характеристик электродов, обратимых по основным носителям заряда. Как было выяснено, при растворении – осаждении родственного металла лимитирующими стадиями являются кристаллизация при средних потенциалах и перенос заряда при повышенных. Из этого делается практический вывод о том, что единственным способом уменьшения электродной поляризации в электрохимических преобразователях энергии при протекании таких гетерогенных процессов является увеличение эффективней площади, т.е. применение электродов.

Компьютерное моделирование распределенных металлических электродов указало дальнейшие пути повышения электрических характеристик таких электродов путем снижения поляризации, повышения коэффициента использования активной массы, увеличения обратимости и т.д.

Выяснены основные причины неудовлетворительной работы медного электрода и даны рекомендации к их устранению.

Проведенные исследования позволили разработать способы получения активной массы серебряного электрода, изготовления прессованных, намазных и прокатанных серебряных электродов для различных электрохимических преобразователей энергии с электролитом Ag4RbI5. Также был разработан серебряный электрод, обладающий повышенной обратимостью и выдерживающий «разряд – заряд».

Страницы: 1 2 3 4 5 6 7 8

Информация о химии

Db — Дубний

ДУБНИЙ (лат. Dubnium), Db, химический элемент V группы периодической системы, атомный номер 105, атомная масса [262], наиболее устойчивый изотоп 262Db. Свойства: радиоактивен. Металл, повидимому находится в твердом состоянии при ...

At — Астат

АСТАТ (лат. Astatium), At, химический элемент VII группы периодической системы, атомный номер 85, атомная масса 209, 9871, относится к галогенам. Свойства: по одним свойствам напоминает неметалл иод, по другим металл полоний. Рад ...

Лелуар (Leloir), Луис Федерико

Аргентинский биохимик Луис Федерико Лелуар родился в Париже, когда его родители, Федерико Лелуар и Ортенсиа (Агуирре) Лелуар, совершали поездку во Францию. Мальчику исполнилось два года, и семья Лелуаров возвратилась в Буэнос-Айре ...