Исторический очерк биохимии

Рефераты по химии / Исторический очерк биохимии
Страница 4

АТФ+Н2О = АДФ + Н3РО4 ΔG0I = -31,0 КДж/моль.

АДФ+Н2О = АМФ +Н3РО4 ΔG0I = -31,9 КДж/моль.

Одной из центральных проблем биоэнергетики является биосинтез АТФ, который в живой природе происходит путём Фосфорилирование АДФ.

Фосфорилирование АДФ является эндергоническим процессом и требует источника энергии. Как отмечалось ранее, в природе преобладает два таких источника энергии – это солнечная энергия и химическая энергия восстановленных органических соединений. Зелёные растения и некоторые микроорганизмы способны трансформировать энергию, поглощённых квантов света в химическую энергию, которая расходуется на фосфорилирование АДФ в световой стадии фотосинтеза. Этот процесс регенерации АТФ получил название фотосинтетического фосфорилирования. Трансформация энергии окисления органических соединений в макроэнергетические связи АТФ в аэробных условиях происходит преимущественно путём окислительного фосфорилирования. Свободная энергия, необходимая для образования АТФ, генерируется в дыхательной окислительной цепи митаходрий.

Известен ещё один тип синтеза АТФ, получивший название субстратного фосфорилирования. В отличии от окислительного фосфорилирования, сопряжённого с переносом электронов, донором активированной фосфорильной группой (- РО3 Н2), необходимой для регенерации АТФ, являются интермедианты процессов гликолиза и цикла трикарбоновых кислот. Во всех этих случаях окислительные процессы приводят к образованию высокоэнергетических соединений: 1,3 – дифосфоглицерата (гликолиз), сукцинил – КоА (цикл трикарбоновых кислот), которые при участии соответствующих ферментов способны фолирировать АДФ и образовывать АТФ. Трансформация энергии на уровне субстрата является единственным путём синтеза АТФ в анаэробных организмах. Этот процесс синтеза АТФ позволяет поддерживать интенсивную работу скелетных мышц в периоды кислородного голодания. Следует помнить, что он является единственным путём синтеза АТФ в зрелых эритроцитах не имеющих митохондрий.

Особо важную роль в биоэнергетике клетки играет адениловый нуклеотид, и которому присоединены два остатка фосфорной кислоты. Такой вещество называется аденозинтрифосфорной кислотой (АТФ). В химических связях между остатками фосфорной кислоты молекулы АТФ запасена энергия, которая освобождается при отщеплении органического фосфорита: АТФ= АДФ+Ф+Е, где Ф – фермент, Е – освобождающая энергия. В этой реакции образуется аденозинфосфорная кислота (АДФ) – остаток молекулы АТФ и органический фосфат. Энергию АТФ все клетки используют для процессов биосинтеза, движения, производство тепла, нервных импульсов, свечений (например, улюминисцентных бактерий), то есть для всех процессов жизнедеятельности.

АТФ – универсальный биологический аккумулятор энергии. Световая энергия, заключенная в потребляемой пище, запасается в молекулы АТФ.

Запас АТФ в клетке невелик. Так, в мышце запаса АТФ хватает на 20 – 30 сокращений. При усиленной, но кратковременной работе мышцы работают исключительно за счёт расщепления содержащейся в них АТФ. После окончания работы человек усиленно дышит – в этот период происходит расщепление углеводов и других веществ ( происходит накопление энергии) и запас АТФ в клетках восстанавливается.

Глюкоза. Формула глюкозы.

Сахара имеют общую формулу С(Н2О)n, где n – целое число (от 3 до 7).

Всё сахара содержат гидроксильные, а также либо альдегидные, либо китонные группировки. Взаимодействую друг с другом, моносахара могут образовывать ди-, три- или олигосахариды. Сахара являются главным энергетическим субстратом клеток. Кроме того, они образуют связи с белками и липидами, а также являются строительными блоками при образовании более сложных биологических структур. Основными реакционоспособными группировками сахаров являются гидроксильные группы, участвующие, в частности, в образовании связей между мономерами.

Во всех клетках способных метаболизировать глюкозу, первой реакцией является её фосфорилирование до глюкозо – 6 – фосфата. Реакция катализируется ферментом гексокиназой, а донором фосфорильной группы является молекула АТФ.

Эта реакция практически необратима, дельта G0I= -16,74 КДж/моль. Гексокиназа, присутствующая во всех тканях, за исключением паренхимы печени имеет высокое средство к глюкозе, а также способна фосфорилировать и другие гексозы, но значительно с меньшей скоростью. В клетках печени эту функцию выполняет глюкокиназа, активность которой зависит от питания. Глюкокиназа специфична к глюкозе и эффективно функционирует только при высокой концентрации в крови глюкозы. Важным свойством глюкокиназы является ингибирование продуктом реакции глюкозо – 6 – фосфатом по аллостерическому механизму.

Страницы: 1 2 3 4 5 6 7

Информация о химии

Ли (Yuan Tseh Lee), Ян

Китайско-американский химик Ян Ли (Юань Цзели) родился в Циншуйе, на Тайване, в семье художника и преподавателя живописи Ли Цзеван и учительницы начальной школы Пей Цзай. Предки его родителей переселились на Тайвань из континентал ...

Химический элемент ванадий

В начале XIX в. в Швеции были найдены новые богатые месторождения железной руды. Одна за другой сооружались доменные печи. Но что примечательно: при одинаковых условиях некоторые из них давали железо удивительной к ...

Амигдалин

Синонимы: амигдалозид миндальной кислоты нитрила генциобиозид Внешний вид: бесцветн. ромбические кристаллы (растворитель перекристаллизации - вода) Брутто-формула (система Хилла): C20H27NO11 Молекулярная масса (в а.е.м.): 4 ...