Исторический очерк биохимии

Рефераты по химии / Исторический очерк биохимии
Страница 6

Обмен веществ складывается из двух взаимосвязанных, одновременно протекающих в организме процессов – ассимиляция и диссимиляция, или анаболизм и катаболизм. В ходе катаболических превращений происходит расщепление крупных органических молекул до простых соединений с одновременным выделением энергии, которая запасается в форме богатых энергией фосфатных связей, главным образом в молекуле АТФ и других богатых энергией соединений. Катаболические превращения обычно осуществляются в результате гидролитических и окислительных реакций и протекает как в отсутствии кислорода (анаэробный путь – гликолиз, брожение), так и при его участии (аэробный путь – дыхание). Второй путь эволюционно более молодой и в энергетическом отношении более выгодный. Он обеспечивает полное расщепление органических молекул до СО2 и Н2О. Разнообразные органические соединения в ходе катаболических процессов превращаются в органическое число небольших молекул (помимо СО2 и Н2О): углеводы – в трифосфаты и (или) пируват, жиры – в ацетил – КоА, пропионил – КоА, оксалоацетат, α – кетоглютарат, фумарат, сукцинат и конечные продукты азотистого обмена – мочевину, аммиак, мочевую кислоту и другие.

В ходе анаболических превращений происходит биосинтез сложных молекул из простых молекул – предшественников. Автотрофные организмы (зелёные растения и некоторые бактерии) могут осуществлять первичный синтез органических соединений из СО2 с использованием энергии солнечного света (фотосинтез) или энергии окисления неорганических веществ. Гетеротрофы синтезируют органические соединения только за счёт энергии и продуктов, образующихся в результате катаболических превращений. Исходным сырьём для процессов биосинтеза в этом случае служит небольшое число соединений, в том числе ацетил – КоА, сукцинил КоА, рибоза, пировиноградная кислота, глицерин, глицин, аспарагиновая, глутаминовая и другие аминокислоты. Каждая клетка синтезирует характерные для неё белки, жиры, углеводы и другие соединения. Например, глюкоген мышц синтезируется в мышечных клетках, а не доставляется кровью из печени. Как правило, синтез включает восстановительные этапы и сопровождается потреблением энергии.

Функции липидов.

Липиды (от греческого “липос” – жир) – низкомолекулярные органические соединения полностью или почти полностью нерастворимые в воде, могут быть извлечены из клеток животных, растений, и микроорганизмов неполярными органическими растворителями, такими как хлороформ, эфир, бензол.

Гидрофобность (или липофильность) является отличительным свойством этого класса соединения, хотя по природе химическому строению и структуре – они весьма разнообразны. В их состав входят спирты, жирные кислоты, азотистые соединения, фосфорная кислота, углеводы и другие. Следовательно, учитывая различия в химическом строении, функциях соединений, относящихся к липидам, дать единое определение для представителей этого класса веществ невозможно.

Роль липидов в процессе жизнедеятельности организма велика и разнообразна. К основным функциям липидов относятся структурная, энергетическая, резервная, защитная, регуляторная.

Структурная функция.

В комплексе с белками липиды являются структурными компонентами всех биологических мембран клеток, а следовательно, влияют на их проницаемость, участвуют в передаче нервного импульса, в создании межклеточного взаимодействия и других функциях биомембран.

Энергетическая функция.

Липиды являются наиболее энергоёмким “клеточным топливом”. При окислении 1г. жира выделяется 39 КДж энергии, что в два раза больше, чем при окислении 1г. углеводов.

Резервная функция.

Липиды являются наиболее компактной формой депонирования энергии в клетке. Они резервируются в адипоцитах – клетках жировой ткани. Содержание жира в организме взрослого человека составляет 6 – 10 кг.

Защитная функция.

Обладая выраженными термоизоляционными свойствами, липиды предохраняют организм от термических воздействий; жировая прокладка защищает тело и органы животных от механических и физических повреждений; защитные оболочки в растениях (восковой налёт на листьях и плодах) защищает от инфекции и излишней потери или накопления воды.

Страницы: 1 2 3 4 5 6 7

Информация о химии

Место и функции химического языка в системе средств обучения

  Химический язык относится к языково-логическим средствам обучения. Часто некоторые его образные элементы (структурные формулы, символические схемы и др.) относят к абстрактной наглядности, важной для формирования пред ...

O — Кислород

КИСЛОРОД (лат. Oxygenium), O (читается «о»), химический элемент с атомным номером 8, атомная масса 15,9994. В периодической системе элементов Менделеева кислород расположен во втором периоде в группе VIA. Природный ки ...

Rg — Roentgenium (Рентгений)

РЕНТГЕНИЙ (лат. Roentgenium, бывший унунуний (unununium)), Rg, химический элемент I группы периодической системы, атомный номер 111, атомная масса [272], наиболее устойчивый изотоп 272Rg. Свойства: радиоактивен. Металл, повидимом ...