Механизм и кинетика переходных процессов на межфазных границах электрохимических преобразователей энергии на основе низкотемпературных твердых электролитов

Рефераты по химии / Механизм и кинетика переходных процессов на межфазных границах электрохимических преобразователей энергии на основе низкотемпературных твердых электролитов
Страница 13

В седьмой главе приведены результаты разработки активных масс электродов и самих электродов для устройств с низкотемпературными электролитами в зависимости от режимов эксплуатации электродов [25–34]:

1. Разработана технология получения активной массы серебряного электрода, удовлетворяющая условиям массового производства. Исследована зависимость электрических характеристик электродов из этой активной массы от различных параметров активной массы и испытаний:

• КИ от теоретической емкости электрода (21);

• КИ от плотности разрядного тока (22) и др.

По своим электрическим характеристикам активная масса, полученная согласно разработанной методике не уступает, а во многом и превосходит известные по литературе активные массы. При токе разряда 10 мА/см2 КИ электрода из такой активной массы составляет (85±4)% при начальной поляризации 20…25 мВ. Удельная емкость достигает 165 А час/кг. При -40 °С

КИ составляет (20±4)% при поляризации 40…50 мВ.

2. Разработана технология изготовления тонкого (50… 100 мкм) распределенного серебряного электрода, удовлетворяющая условиям массового производства. Электрические характеристики электрода не ниже соответствующих характеристик активной массы.

3. Подобрано соотношение компонентов Ag: Ag, позволяющее изготовление циклируемых электродов с повышенными по сравнению с известными глубиной циклов разряд – заряд и количеством этих циклов. Электрод толщиной 2,5 мм при токе 15 мА/см2 выдерживает не менее пяти циклов разряд – заряд глубиной 250 Кл/см2.

Основные результаты и выводы

Настоящая работа обобщает результаты комплексного исследования механизма и кинетики электродных процессов в ионной и электронной подсистемах в низкотемпературных твердых электролитах с использованием импульсных методов. Важнейшим результатом работы является получение новых и уточнение полученных другими исследователями количественных характеристик указанных электродных процессов и разработка на этой основе обобщенного подхода к механизму и кинетике электродных реакций на межфазных границах электрохимических преобразователей энергии.

Основные черты результаты работы могут быть обобщены в следующих выводах:

1. Иновалентные примеси, обуславливающие появление примесных электронных дефектов в низкотемпературных твердых электролитах, возникают при синтезе электролитов и их природа в основном оггоеделяется составом атмосферы при синтезе. Потенциал индифферентного электрода зависит от концентрации потенциалопределяющих иновалентных примесей. Величина этого потенциала является основной характиристикой качества электролита.

2. Механизм и кинетика электродных реакций в медьпроводящих и серебропроводящих электролитах качественно идентичны и различаются лишь численными значениями кинетических параметров.

3. В низкотемпературных твердофазных системах параллельно могут идти реакции в ионной и электронной подсистемах. В ионной подсистеме происходит осаждение – растворение металла, по ионам которого осуществляется ионная проводимость электролига. В электронной подсистеме имеет место генерация – рекомбинация электронных дефектов (как правило, дырок).

4. Соотношение вкладов электронной и ионной подсистем в лимитирующую стадию определяется условиями поверхностных состояний контактирующих фаз в зависимости от поляризации.

5. Реакции в электронной подсистеме сопровождаются изменением стехиометрии приэлектродного слоя электролита. При значительной анодной поляризации нестехиометрия достигает границы гомогенности электролита и на электродах выпадают резистивные фазы галогенидов.

Страницы: 8 9 10 11 12 13 14

Информация о химии

Бейльштейн (Beilstein), Фёдор Фёдорович (Фридрих Конрад)

Русский химик-органик Фёдор Фёдорович Бейльштейн родился в Петербурге; окончив здесь же курс в школе св. Петра (Peterschule), отправился в Гейдельбергский университет, где в 1853-1854 и 1856 гг. изучал химию под руководством Р.В.Б ...

Химическая революция

Больших успехов в выделении газов и изучении их свойств достиг Джозеф Пристли – протестантский священник, увлеченно занимавшийся химией. Близ Лидса (Англия), где он служил, находился пивоваренный завод, откуда можно было пол ...

Учёные нашли полезное применение битому стеклу

Химики из университета Гринвича нашли, как они говорят, простой способ переработки битого стекла в минерал, который можно использовать для удаления загрязняющих веществ из воды. «Новизна нашего исследования прежде всего в т ...